\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Optimizers
Real Numbers
Needed by:
Approximators
Links:
Sheet PDF
Graph PDF

Real Optimizers

Why

Often the chain considered in optimization is the real numbers.

Definition

A function from a non-empty set to the real numbers, in the context of optimizers, is called an objective function for the feasible set (its domain). Suppose the feasible set is a subset of real numbers. Often we can specify a function defined for every real number. The objective function is the restriction of this function to those elements which are feasible.

Notation

Let $D$ be a non-empty set, a mnemonic for “domain.” Let $f: D \to \R $. Often we have $g: A \to \R $, where $D \subset A$. So $f$ is the restriction of $g$ to the feasible set $D$. In this case the language feasible set language is especially useful

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view