\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Products
Rational Multiplicative Inverses
Needed by:
Real Arithmetic
Links:
Sheet PDF
Graph PDF

Real Multiplicative Inverses

Why

What is the multiplicative inverse in the reals?

Result

We can show the following.1

The multiplicative inverse of $R \in \R $, $R \neq 0_{\R }$,
  1. if $0_{\Q } \in R$, then

    \[ S = \Set*{q \in \Q }{q \leq 0_{\Q }} \union \Set*{r^{-1}}{\exists s < r, (r \not\in R)} \]

    is a multiplicative inverse of $R$.
  2. if $0_{\Q } \not\in R$, then case (1) applies to $-R$. Let $S$ be the multiplicative inverse of $-R$. Then the additive inverse of $S$, i.e., $-S$ is a multiplicative inverse of $R$.

Notation

We denote the multiplicative inverse of $r \in \R $ by $\inv{r}$. We denote $q \cdot (\inv{r})$ by $q/r$.

Division

We call the operation $(a, b) \mapsto a/b$ real division. We call the product of $a$ and the multiplicative inverse of $b$ the (real) quotient of $a$ and $b$.


  1. The account will appear in future editions. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view