Given a square matrix $A \in \R ^{n \times
n}$, a real number $m \in \R $ is a
minor of $A$ if
\[
m = \det A_{I, J}
\]
for some $I \subset \set{1, \dots , n}$ and $J
\subset \set{1, \dots , m}$.The number $a$ is a principal
minor if $I = J$.It is called the $(i,j)$
minor if it is