\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Matrices
Real Submatrices
Real Matrix Determinants
Needed by:
None.
Links:
Sheet PDF
Graph PDF
Wikipedia

Real Matrix Minors

Definition

Given a square matrix $A \in \R ^{n \times n}$, a real number $m \in \R $ is a minor of $A$ if

\[ m = \det A_{I, J} \]

for some $I \subset \set{1, \dots , n}$ and $J \subset \set{1, \dots , m}$. The number $a$ is a principal minor if $I = J$. It is called the $(i,j)$ minor if it is

\[ \det A_{{I \setminus \set{i}, J \setminus \set{j}}}. \]

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view