Given a square matrix $A \in \R ^{n \times n}$. \[ \sum_{\sigma \in S_n} \left( \sgn(\sigma ) \prod_{i = 1}^{n} a_{i,\sigma _{i}} \right) \] We denote the determinant of $A$ by $\det A$.
\[ \sum_{\sigma \in S_n} \left( \sgn(\sigma ) \prod_{i = 1}^{n} a_{i,\sigma _{i}} \right) \]