Real Matrices with Orthonormal Columns
Matrix notation
Let $u_1 \dots , u_k \in \R ^n$.
Define $U \in \R ^{n \times k}$ so that
\[
U = \bmat{u_1 & u_2 & \cdots & u_k}.
\]
Then $\set{u_1, \dots , u_k}$ is an orthonormal
set mean
\[
U^\top U = I_k
\]
Notice that if $k < n$, $UU^\top \neq I$,
since its rank is at most $k$.