\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
N-Dimensional Space
Vector-Valued Multivariate Functions
Multivariate Vector Linear Functions
Needed by:
Invariant Real Subspaces
Links:
Sheet PDF
Graph PDF

Real Linear Transformations

Definition

A real linear transformation is a function $f: \R ^n \to \R ^m$ satisfying

\[ f(\alpha x + \beta y) = \alpha f(x) + \beta f(y) \quad \text{for all } x, y \in \R ^n \text{ and } \alpha , \beta \in \R \]

Equivalently, $f$ is (a) homogenous $f(\alpha x) = \alpha f(x)$ and (b) additive $f(x + y)= f(x) + f(y)$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view