\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Limits
Needed by:
Geometric Series
Links:
Sheet PDF
Graph PDF

Real Limit Algebra

Why

Consider two convergent sequences. What if we add them termwise? Or multiply?

Main results

Let $(x_n)_{n \in \N }$ and $(y_n)_{n \in \N }$ be two limits with $x_0$ and $y_0$ in $\R $. Then the sequence $(s_n)$ defined by $s_n = x_n + y_n$ converges to the limit $x_0+ y_0$ and the sequence $m_n = x_ny_n$ converges to the limit $x_0y_0$.1

In particular for $a \in \R $, the sequence $(c_n)$ defined by $c_n = ax_n$ converges to the limit $ax_0$.


  1. Future editions will include the account. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view