\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Integrals
Extended Real Numbers
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Real Integral Series Convergence

Why

Sums of non-negative functions are increasing, and workable with the monotone convergence theorem.

Result

The integral of the limit of the partial sums of a sequence of measurable, nonnegative, extended-real-valued functions is the limit of the partial sums of the integrals.
Let $(X, \mathcal{A}, \mu )$ be a measure space, and let $\seqt{f}: \to \nneri$ a $\mathcal{A}$-measurable function for every natural number $n$. We want to show that:

\[ \int \sum_{k = 1}^{\infty} f_k d\mu = \sum_{k = 1}^{\infty} \int f_k d\mu. \]

We apply the monotone convergence theorem to the sequence $\set{\sum_{i = 1}^{n}f_i}_n$. This sequence is nondecreasing because $f_n \geq 0$ for all $n$.
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view