\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Integrals
Absolute Value
Needed by:
Interchangeable Measures
Real Integral Limit Theorems
Links:
Sheet PDF
Graph PDF

Real Integral Monotone Convergence

Why

An integral is a limit. When can we exchange this limit with another? We being a development culminating in a sufficient condition for exchange.

Result

The integral of the almost everywhere limit of an almost-everywhere nondecreasing sequence of measurable, nonnegative, extended-real-valued functions is the limit of the sequence of integrals of the functions.

Suppose $(X, \mathcal{A} , \mu )$ is a measure space, $\seqt{f}: X \to \eri$ is a $\mathcal{A} $-measurable function for every natural number $n$ and $f: X \to \eri$ is a $\mathcal{A} $-measurable function. If

\[ f_n(x) \leq f_{n+1}(x) \quad \text{ and } \quad f(x) = \lim_n \seqt{f}(x) \]

hold for all natural $n$ and almost every $x$ in $X$, then

\[ \int f d\mu = \lim_n \int f_n d\mu . \]

This result is often called the monotone convergence theorem.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view