\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Integrals
Extended Real Numbers
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Real Integral Limit Inferior Bound

Result

The integral of the limit inferior of a sequence of measurable, nonnegative, extended-real-valued functions is no larger than the limit inferior of the sequence of integrals.

Let $(X, \mathcal{A} , \mu )$ be a measure space, and let $\seqt{f}: \to \nneri$ a $\mathcal{A} $-measurable function for every natural number $n$. We want to show that if

\[ \int \liminf_n f_n d\mu \leq \liminf_n \int f_n d\mu . \]

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view