\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Integrals
Extended Real Numbers
Needed by:
Real Integral Limit Theorems
Links:
Sheet PDF
Graph PDF

Real Integral Dominated Convergence

Why

An integral is a limit. When can we exchange this limit with another? We give a first result in the search for sufficient conditions to do so.

Result

When context is clear, we refer to the following proposition as the dominated convergence theorem.

The integral of the almost everywhere limit of a sequence of measurable, extended-real-valued, almost-everywhere bounded functions is the limit of the sequence of integrals of the functions.

Let $(X, \mathcal{A} , \mu )$ be a measure space. Let $f: X \to \eri$ be a $\mathcal{A} $-measurable function. Let $\seqt{f}: \to \eri$ a $\mathcal{A} $-measurable function for every natural number $n$ so that $\seq{f}$ converges almost everywhere to $f$. Let $g: X \to \nneri$ be an integrable function which dominates $f_n$ almost everywhere for each $n$. We want to show that:

\[ \int f d\mu = \lim_{n} \int f_n d\mu . \]

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view