\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Simple Integral Additivity
›
Needed by:
Linear Transformations
›
Links:
Sheet PDF
›
Graph PDF
›
Real Integral Additivity
Why
Is the sum of two functions integrable?
What is their sum.
Result
Suppose $f, g: \R \to \R $ are integrable.
Then the function $f+g$ is integrable and
\[ \int f + g = \int f + \int g \]
Real Integral Additivity
Links:
Sheet PDF
›
Graph PDF
›
Needs:
Simple Integral Additivity
›
Needed by:
Linear Transformations
›
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version
13a6779cc
—
About
—
Show the old page view