\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Norms
Real Square Roots
Real Inner Products
Needed by:
Complete Real Inner Product Spaces
Matrix Scalar Product
Monotonic Functions of Real Matrices
Orthonormal Set of Vectors
Triangle Equality
Links:
Sheet PDF
Graph PDF

Real Inner Product Norms

Why

To every real-valued inner product there corresponds a norm, in a similar manner to the construction for $\R ^n$.

Definition

Let $(V, \F )$ be a vector space. Let $f: V \times V \to \F $ be an inner product with $f(x, x) \in \R $. Let $g: V \to \R $ such that

\[ g(x) = \sqrt{f(x, x)}. \]

Then $g$ is a norm.

The norm of a vector in an inner product space is the square root of the inner product of the vector with itself.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view