\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
N-Dimensional Space
Real Norm
Space Inner Product
Needed by:
Complex Inner Product
Orthonormal Set of Real Vectors
Probability Vectors
Real Halfspaces
Real Inner Products
Real Polar Sets
Vectors as Matrices
Links:
Sheet PDF
Graph PDF

Real Inner Product

Definition

The real inner product (or dot product, scalar product) of two real vectors $x, y \in \R ^n$ is

\[ x_1y_1 + x_2y_2 + \cdots + x_ny_n \]

We denote the inner product of $x$ and $y$ by $\ip{x,y}$.

Properties

The inner product has several important properties

  1. $\ip{\alpha x, y} = \alpha\ip{x, y}$
  2. $\ip{x + y, z} = \ip{x, z} + \ip{y, z}$
  3. $\ip{x, y} = \ip{y, x}$
  4. $\ip{x,x} \geq 0$
  5. $\ip{x,x} = 0 \iff x = 0$

Connection to norm

It is important to note that $\norm{x} = \sqrt{\ip{x,x}}$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view