\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Affine Set Dimensions
Subspace Orthogonal Complements
Needed by:
Real Affine Sets and Hyperplanes
Real Halfspaces
Links:
Sheet PDF
Graph PDF

Real Hyperplanes

Why

We generalize the notion of a point in $\R $, a line in $\R ^2$ and a plane in $\R ^3$.

Definition

A hyperplane is a $(n-1)$-dimensional affine set in $\R ^n$.

Discussion

Since the $n-1$-dimensional subspaces are the orthogonal complements of the one-dimensional subspaces, they are the sets which can be specified by

\[ \Set*{x \in \R ^n}{x \perp b} + a \]

for $a, b \in \R ^n$. The hyperplanes are translates of these,

\[ \begin{aligned} \Set*{x \in \R ^n}{x \perp b} + a &= \Set*{x + a}{\ip{x,b} = 0} \\ &= \Set*{y}{\ip{y - a,b} = 0} = \Set*{y}{\ip{y,b} = \beta }, \\ \end{aligned} \]

where $\beta = \ip{a,b}$.

Characterization

$H \subset \R ^n$ is a hyperplane if and only if there exists $\beta \in \R $ and nonzero $b \in \R ^n$ so that

\[ H = \Set*{x \in \R ^n}{\ip{x,b} = \beta }. \]

$b$ and $\beta $ are unique up to a common nonzero multiple. For example, $b, \beta $ and $2b, 2\beta $ give the same hyperplane.
Any such vector $b$ is called a normal (or normal vector) to the hyperplane.
If $H$ is a hyperplane not containing the origin, then there is a unique unit vecor $u$ and $\alpha > 0$ so that

\[ H = \Set{x \in \R ^n}{\ip{x,u} = \alpha } \]

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view