\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Intervals
Needed by:
Analytic Functions
Complex Functions
Dimension Reducers
Exponential Function
Function Growth Classes
Monotone Real Functions
Optimization Problems
Outcome Probabilities
Real Convex Functions
Real Differentiable Functions
Real Function Graphs
Real Function Space
Real Linear Functions
Real Rational Functions
Rectangular Functions
Sign Function
Simple Functions
Submodular Functions
Threshold Graphs
Weighted Graphs
Links:
Sheet PDF
Graph PDF

Real Functions

Why

We name those functions—an important set—whose range is contained in the real numbers.

Definition

A real function is a real-valued function. The domain is often an interval of real numbers, but may be any non-empty set.

Notation

Given any set $A$, $f: A \to \R $ is a real function. If $A = \R $, then $f \in \R \to \R $.

We often speak of functions defined on intervals. Given $a, b \in \R $, then $g: [a, b] \to \R $ is a real function defined on a closed interval. The function $h: (a, b) \to \R $ is a real function defined on an open interval.

We regularly declare the interval and the function at once. For example, “let $f: [a, b] \to \R $” is understood to mean “let $a$ and $b$ be real numbers with $a < b$, let $[a, b]$ be the closed interval with them as endpoints, and let $f$ be a real-valued function whose domain is this interval”. We read the notation $f: [a, b] \to \R $ aloud as “$f$ from closed $a$ $b$ to $\R $.” We use $f: (a, b) \to \R $ similarly (read aloud “$f$ from open $a$ $b$ to $\R $”).

Examples

Given $c \in \R $, define $f: \R \to \R $ by

\[ f(x) = c \quad \text{for all } x \in \R \]

Define $f: \R \to \R $ by

\[ f(x) = 2x^2 + 1 \quad \text{for all } x \in \R \]

Define $f: \R \to \R $ by

\[ f(x) = \begin{cases} 1 & \text{ if } x \in \Q \\ 0 & \text{ otherwise. } \end{cases} \]

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view