\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Function Graphs
Multivariate Functions
Real Convex Sets
Extended Real Numbers
Needed by:
Convex Multivariate Functions
Links:
Sheet PDF
Graph PDF

Real Function Epigraphs

Definition

Let $f: D \to R$ be a multivariate real-valued function where $D \subset \R ^d$. The graph of $f$ is the set in $\R ^{d + 1}$ defined by

\[ \Set{(x, f(x)) \in \R ^d \times \R }{x \in D} \]

Of course, in these sheets, the graph is the same object as the function $f$ (see discussion in Functions). The epigraph of $f$ is the set in $\R ^{d + 1}$ defined by

\[ \Set{(x, \alpha ) \in D \times \R }{f(x) \leq \alpha }. \]

The prefix “epi” is Greek, meaning “upon” or “above”. It is merited (see the visualization below) by the fact that $f \neq \epi f$.

Visualization of epigraph

Notation

We denote the epigraph of a function $f$ by $\epi f$.

Extension to extended real numbers

We can extend this concept in the natural way to extended real value function $f: D \to \Rbar$.

\[ \epi f \Set{(x, \alpha ) \in D \times \R }{f(x) \leq \alpha } \]

Caution, in this case $f \not\subset \epi f$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view