Let $f: D \to R$ be a multivariate real-valued
function where $D \subset \R ^d$.
The graph of $f$ is the
set in $\R ^{d + 1}$ defined by
\[
\Set{(x, f(x)) \in \R ^d \times \R }{x \in D}
\] \[
\Set{(x, \alpha ) \in D \times \R }{f(x) \leq \alpha }.
\]
We denote the epigraph of a function $f$ by $\epi f$.
We can extend this concept in the natural way
to extended real value function $f: D \to
\Rbar$.
\[
\epi f \Set{(x, \alpha ) \in D \times \R }{f(x) \leq \alpha }
\]