\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Function Space
Approximators
Vector Space Bases
Needed by:
Linear Predictors
Links:
Sheet PDF
Graph PDF

Real Function Approximators

Why

Since the function space $\R \to \R $ is a vector space, can we approximate a “complex” element of this set by some basis of “simpler” functions in $\R \to \R $.

Of course, there may be no set that can represent $f$. So instead we may be interested in an element $g \in \span\set{g_1, \dots , g_d}$ which approximates $f$.1

Definition

A real function approximator for a function $f: \R \to \R $ is a function $g: \R \to \R $.


  1. Future editions will modify. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view