\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Convex Sets
Real Functions
Needed by:
Convex Multivariate Functions
Real Convex Optimization Problems
Real Strictly Convex Functions
Links:
Sheet PDF
Graph PDF

Real Convex Functions

Why

We speak of functions which always bends up.1

Definition

Suppose $X \subset \R $ is a convex set. A function $f: X \to \R $ is convex if

\[ f(tx + (1-t)y) \leq tf(x) + (1-t)f(y) \]

for all $y \in [0,1]$ and $x, y \in X$.

In other words, a real-valued function is a function defined on a convex set of real numbers for which the result of the function on a convex combination of any two points in the domain is smaller than the convex combination of the same length of the value of the function on the endpoints.

$f$ is concave if $-f$ is convex.


  1. Future editions may expand. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view