\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
N-Dimensional Space
Needed by:
Cones
Links:
Sheet PDF
Graph PDF

Real Cones

Definition

A set $C \subset \R ^n$ is a cone (or nonegative homogeneous)

\[ x \in C \text{ and } \theta \geq 0 \Rightarrow \theta x \in C. \]

Examples

Let $x \in \R ^n$. Define $C_1 \subset \R ^n$ by

\[ C_1 = \Set{\theta x}{\theta \geq \theta }. \]

$C_1$ is a cone. The set

\[ C_2 = \Set{x \in \R ^{n}}{x_i \geq 0 \text{ for } i = 1, \dots , n} \]

is a cone.
$C_2$ is called the non-negative orthant. The set

\[ C_3 = \Set{x \in \R ^{n}}{x_i \leq 0 \text{ for } i = 1, \dots , n} \]

is a cone.
The set $C_2 \cup C_3$ is a cone.

Notation

We denote the nonnegative orthant of $\R^n$ by $\R ^n_+$. We denote the nonpositive orthant of $\R^n$ by $\R ^n_-$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view