\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Subspace Representations
Affine Set Dimensions
Needed by:
Projections On Affine Sets
Links:
Sheet PDF
Graph PDF

Real Affine Set Representations

Why

Since every affine set is a translate of a unique subspace, we can represent them by representing the vector and the subspace.

Definition

Recall that $M$ is affine means $M = S + a$ for some subspace $S$ and vector $a \in \R ^n$. The dimension of $M$ is the dimension of the subspace. Suppose $\dim S = k$, then there exists $Q \in \R ^{n \times k}$ with $Q^\top Q = I$, so that for any $x \in S$, there exists unique $z \in \R ^k$ with $x = Qz$. Since $M = S + a$, we have

\[ M = \Set{y \in \R ^n}{(\exists z \in \R ^k)(y = a + Qz)} \]

We also denote this set $\Set{a + Qz}{z \in \R ^k}$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view