\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Affine Sets
Real Affine Combinations
Needed by:
Affine Set Dimensions
Affinely Independent Vectors
Convex Set Dimensions
Links:
Sheet PDF
Graph PDF

Real Affine Hulls

Definition

The affine hull of a set in $n$-dimensional space is the intersection of the collection of affine sets which contain it.

Notation

We denote the affine hull of $S$ by $\aff S$.

The affine hull of $S \subset \R ^n$ consists of all vectors which can be expressed as

\[ \lambda _1 x_1 + \lambda _2 x_2 \cdots + \lambda _m x_m \]

such that $x_i \in S$ and $\sum_i \lambda _i = 1$.

Also, notice that if $A \subset \R ^n$ is affine, then $\aff A = A$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view