\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Random Variables
Outcome Variable Expectation
Needed by:
Distortion Functions
Minimum Mean Squared Error Estimates
Minimum Mean Squared Error Estimator
Moment Generating Function
Optimal Average Codeword Length
Probabilistic Models
Product Under Independence
Random Variable Moments
Real-Valued Random Variable Variance
Stochastic Dynamical Systems
Links:
Sheet PDF
Graph PDF

Real-Valued Random Variable Expectation

Definition

The expectation (or expected value) of a real-valued random variable defined on a probability space is its integral with respect to the probability measure. The expectation of a random variable is also called its mean.

Notation

Suppose $f: X \to \R $ is a random variable on a probability space $(X, \mathcal{A} , P)$. We denote the expectation of $f$ by $\E f$, so that

\[ \E f := \int f dP. \]

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view