\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Rational Numbers
Integer Products
Integer Order
Needed by:
Complete Fields
Real Order
Links:
Sheet PDF
Graph PDF

Rational Order

Why

We want to order the rationals.

Definition

Consider $\eqc{(a, b)}, \eqc{(b, c)} \in \Q $ with $0_{\Z } < b, d$ If $ad < bc$, then we say that $\eqc{(a, b)}$ is less than $\eqc{(b, c)}$.1 If $\eqc{(a, b)}$ is less than $\eqc{(b, c)}$ or equal, then we say that $\eqc{(a, b)}$ is less than or equal to $\eqc{(b, c)}$.

Notation

If $x, y \in \Q $ and $x$ is less than $y$, then we write $x < y$. If $x$ is less than or equal to $y$, we write $x \leq y$.


  1. One needs to show that this is well-defined. The account will appear in future editions. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view