\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Rational Products
Integer Arithmetic
Inverse Elements
Needed by:
Integer Rational Homomorphism
Real Multiplicative Inverses
Links:
Sheet PDF
Graph PDF

Rational Multiplicative Inverses

Why

What is the multiplicative inverse of $\eqc{(a, b)}$ in the rationals?

Result

The multiplicative inverse of $\eqc{(a, b)} \in \Q $ if $b \neq 0_{\Z }$ is $\eqc{(b,a)}$.

Notation

We denote the multiplicative inverse of $q \in \Q $ by $\inv{q}$. We denote $q \cdot (\inv{r})$ by $q/r$.

Division

We call the operation $(a, b) \mapsto a/b$ rational division.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view