\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Rational Sums
Integer Additive Inverses
Needed by:
Integer Rational Homomorphism
Links:
Sheet PDF
Graph PDF

Rational Additive Inverses

Why

What is the additive inverse of $\eqc{(a, b)}$ in the rationals?

Result

The additive inverse of $\eqc{(a, b)} \in \Q $ is $\eqc{(-a, b)}$.

Notation

We denote the additive inverse of $q \in \Q $ by $-q$. We denote $a + (- b)$ by $a - b$.

Subtraction

We call the operation $(a, b) \mapsto a - b$ subtraction.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view