The range of a matrix $A \in \R ^{m \times n}$ is the set \[ \Set{y \in \R ^m}{(\exists z \in \R ^n)(y = Az)}. \] We often denote this set by $\Set{Az}{z \in \R ^n}$. It is a subset of $\R ^m$, the output space.
\[ \Set{y \in \R ^m}{(\exists z \in \R ^n)(y = Az)}. \]
The nullspace of a matrix $A \in \R ^{m \times n}$ is the set \[ \Set{z \in \R ^n}{Az = 0}. \] It is a subset of $\R ^n$, the input space.
\[ \Set{z \in \R ^n}{Az = 0}. \]