\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real Matrices
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Range and Null Space

Definition

The range of a matrix $A \in \R ^{m \times n}$ is the set

\[ \Set{y \in \R ^m}{(\exists z \in \R ^n)(y = Az)}. \]

We often denote this set by $\Set{Az}{z \in \R ^n}$. It is a subset of $\R ^m$, the output space.

The nullspace of a matrix $A \in \R ^{m \times n}$ is the set

\[ \Set{z \in \R ^n}{Az = 0}. \]

It is a subset of $\R ^n$, the input space.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view