\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Random Variable Laws
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Random Variables Joint Law

Why

We name the image measure of a collection of real-valued random variables.

Definition

The joint law of a sequence of $n$ real-valued random variables is the image measure of the tuple-valued function whose components are the individual random variables.

Notation

Let $(X, \mathcal{A} , \mu )$ be a probability space and $(Y, \mathcal{B} )$ be a measurable space. Let $f_1, \dots , f_n: X \to Y$ be random variables. Define $f: X \to Y^n$ by $(f(x))_i = f_i(x)$. The joint law is the image measure of $f$.

We denote the joint law of $\set{f_i}$ by $\rvlaw{\mu }{f_1, \dots , f_n}: \mathcal{A} \to \nneri$. We defined it by

\[ \rvlaw{\mu }{f_1, \dots , f_n}(A) = \mu (\Set*{x \in X}{f(x) \in A}). \]

for all $A$ in the product sigma algebra on $Y^n$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view