\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Real-Valued Random Variable Expectation
Needed by:
Probabilistic Errors Linear Model
Links:
Sheet PDF
Graph PDF

Random Variable Moments

Results

If the integral of the $n$th power of a real-valued random variable exists, the $n$th moment of the random variable is the expectation of its $n$th power.

Notation

Let $(X, \mathcal{A} , \mathbfsf{P} )$ be a probability space. Let $x$ be a real-valued random variable on $X$ such that $\int x^n d\mathbfsf{P} $ exists. The $n$th moment of $f$ is $\E (f^n)$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view