A quadratic form is a multivariate polynomial each term of which has degree two.
Let $f: \R ^n \to \R $ be a quadratic form.
There exists a matrix $A \in \R ^{n \times
n}$ so that
\[
x^\top A x = \sum_{i,j} A_{ij}x_{i}x_{j}.
\] \[
f(x) = f(x)/2 + f(x)/2 = \frac{1}{2}x^\top Ax +
\frac{1}{2}x^\top A^\top x = x^\top (\frac{1}{2}(A + A^\top ))x.
\]
Observe that $\tr x^\top A x = \tr A x x^\top = \tr xx^\top A$.