How big can a quadratic form be? How small?
\[ \lambda _n x^\top x \leq x^\top A x \leq \lambda _1 x^\top x, \]
for all $x \in \R ^n$.\[ \begin{aligned} x^\top A x = x^\top Q \Lambda Q^\top x &= (Q^\top x)^\top \Lambda (Q^\top x) \\ &= \sum_{i = 1}^{n} \lambda _i (q_i^\top x)^2 \\ &= \lambda _1 \sum_{i = 1}^n (q_i^\top x) = \lambda _1 \norm{Q^\top x}^2 = \lambda _1 \norm{x}^2. \end{aligned} \]
Similarly,\[ \begin{aligned} x^\top A x &= \sum_{i = 1}^{n} \lambda _i (q_i^\top x)^2 \\ &\geq \lambda _n \sum_{i = 1}^n (q_i^\top x) = \lambda _n \norm{Q^\top x}^2 = \lambda _n \norm{x}^2. \end{aligned} \]
For this reason, it is common to order the eigenvalues of $A \in \mathbfsf{S} ^n$ by magnitude with $\lambda _1 \geq \lambda _2 \geq \cdots \geq \lambda _n$. $\lambda _1$ is sometimes denoted $\lambda _{\max}$ and $\lambda _n$ is sometimes denoted $\lambda _{\min}$.
\[ \begin{aligned} \text{ maximize } & \quad x^\top A x \\ \text{ subject to } & \quad \norm{x} = 1. \end{aligned} \]
Since the objective is $x^\top A x \leq \lambda _1$ for all $x \in \R ^n$ with $\norm{x} = 1$, a solution of this problem is the eigenvector $q_1 \in \R ^n$ corresponding to $\lambda _1$. In other words, these inequalities are tight.