\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Natural Equations
Real Square Roots
First Degree Equations
Needed by:
Third Degree Equations
Links:
Sheet PDF
Graph PDF

Quadratic Equation Solutions

Why

Given three nonzero real numbers $a, b, c$, find a real number $x$ to solve $ax^2 + bx + c = 0$.

Result

Let $a, b, c \in \R $ nonzero. Then both

\[ \frac{-b + \sqrt{b^2 - 4ac}}{2a} \quad \text{ and } \quad \frac{-b - \sqrt{b^2 - 4ac}}{2a} \]

are solutions of

\[ ax^2 + bx + c = 0. \]

We call $ax^2 + bx + c = 0$ a quadratic equation.1 The solutions are often writen in short hand

\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \]

which is called the quadratic formula.

Proof

Let $p, q \in \R $ be real numbers. Suppose $x \in \R $ satisfies the second-degree equation

\[ x^2 + px + q = 0 \]

Then

\[ x \in \set{-\frac{p}{2} + \sqrt{\frac{p^2}{4} - q}, -\frac{p}{2} - \sqrt{\frac{p^2}{4} - q}} \]

Suppose $x \in \R $ satisfies

\[ x^2 + px + q = 0 \]

This holds if and only if

\[ x^2 + px = -q \]

which holds if and only if

\[ x^2 + px + \frac{p^2}{4} = \frac{p^2}{4} - q \]

We can express the left hand side as

\[ x^2 + px + \frac{p^2}{4} = \left(x + \frac{p}{2}\right)^2 \]

By substituting this into the left hand side, we have that $x$ is a solution if and only if

\[ \left(x + \frac{p}{2}\right)^2 = \frac{p^2}{4} - q, \]

Hence $x$ is a solution if and only if $x + p/2$ is a square root of $p^2/4 - q$. As usual, there are two quantities, which we denote as usual with $\sqrt{\cdot }$, so that $x$ is a solution if and only if

\[ x + \frac{p}{2} = \pm\sqrt{\frac{p^2}{4} - q} \]

Consequently, $x$ is a solution if and only if

\[ x = -\frac{p}{2} \pm \sqrt{\frac{p^2}{4} - q} \]

A real number $x$ satisfies $ax^2 + bx + c = 0$ if and only if $x = \frac{-b \pm \sqrt{b^2-4ac}}{2a}$.
Divide through by $a$. Define $p = b/a$ and $q = c/a$. Then we have that $x$ is a solution if and only if

\[ x = -\frac{b}{2a} \pm \sqrt{\frac{b^2}{4a^2} - \frac{c}{a}} \]

Which holds if and only if

\[ x = \frac{-b}{2a} \pm \sqrt{\frac{b^2}{4a^2} - \frac{4ac}{4a^2}} \]

which holds if and only if

\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, \]

as desired.

  1. Future editions will prove via completing the square. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view