\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Generated Topologies
Needed by:
None.
Links:
Sheet PDF
Graph PDF
Wikipedia

Product Topologies

Definition

Given a family of topological spaces $\mathcal{F} = \set{(X_\alpha , \mathcal{T} _\alpha }_{\alpha \in I}$, the product topology of $\mathcal{F} $ is the topology on $\prod_{\alpha \in I} X_\alpha $ generated by the set

\[ \Set*{ p_{\beta }^{-1}(U_\beta )) }{ (\exists \beta )(U_\beta \in X_{\beta }) } \]

where $p_\beta : \prod_{\alpha \in I} X_\alpha \to X_\beta $ is the  $\beta $ coordinate projection. Some authorities also use the terminology Tychonoff topology.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view