\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Metrics
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Product Metrics

Why

Given $n$ sets each with metrics, there is a standard way of turning the direct product of the sets into a metric space. In other words, defining a distance on the tuples of elements from the sets.

Motivating result

Let $(A_1, d_1), \dots , (A_n, d_n)$ be metric spaces. Let $A$ be $\prod_{i = 1}^n A_n$ and let $R$ be the set of real numbers. Define $d: A \times A \to R$ by

\[ d(a, b) = \max\set{d_1(a_1, b_1), \dots , d_n(a_n, b_n)}. \]

Then $(A, d)$ is a metric space.

We call $d$ the product metric.
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view