\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Marginal Probability Distributions
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Product Distributions

Why

How do we get a joint probability distribution function from marginals?1

Definition

The product distribution of a sequence $p_1, \dots , p_n: A_i \to [0, 1]$ of distributions is the function $p: \prod_{i} A_i \to [0, 1]$ defined by

\[ p(x) = \prod_{i = 1}^{n} p_i(x_i). \]

Let $p_i: A_i \to [0, 1]$ be probability distributions. Then the product distribution of $p_1, \dots , p_n$ is a probability distribution with marginals $p_1, \dots , p_n$.2

Example: fair coin repeated flips

Suppose we want to model a coin flipped $n$ times. Supposing the coin is fair (see \sheetref{probability_distribtuions}{Probability Distributions}) we might use our probability distribution $p: \set{0, 1} \to [0, 1]$ which assigned $p(0) = p(1) = \nicefrac{1}{2}$. Then the probability of obtaining a sequence of flips $x \in \set{0, 1}$ is

\[ \textstyle p(x) = \prod_{x_i = 1} p_i(1) \prod_{x_i = 0} p_i(0). \]

Notice that if we know $p_i(1) = \rho _i$, then we know $p(0) = (1-\rho _i)$ and so we can write the above as

\[ \textstyle p(x) = \prod_{x_i = 1} \rho _i \prod_{x_i = 0} (1-\rho _i). \]


  1. Future editions will modify. ↩︎
  2. Future editions will include. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view