\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Probability Measures
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Probability Density Function

Definition

A probability density function of a real-valued random variable is a measurable function from the real numbers to real numbers which is (a) non-negative and (b) the integral of the function over a cover-length-measurable set with respect to the cover measure to the cover length is the probability that the random variable takes value in that set. We often abbreviate probability density function as p.d.f, read aloud as “pdf”.

Notation

Let $(X, \mathcal{A} , \mu )$ be a probability space. Let $f$ be a real-valued random variable on $X$. Let $\lambda $ denote the cover length. A function $g: \R \to \R $ is a probability density of $f$ if $g \geq 0$ and of $f$ if

\[ \mu (\Set*{x \in X}{f(x) \in A}) = \int _{A} g d\lambda . \]

Uniqueness

If a probability density function exists, it is unique (up to almost everywhere).
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view