\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Probability Measures
Needed by:
Logistic Probabilistic Models
Probabilistic Errors Linear Model
Probabilistic Learners
Sheet PDF
Graph PDF

Probabilistic Predictors


Let $X = \set{a, b}$ and $Y = \set{0, 1}$. The dataset $((a, 0))$ is consistent, but it is not functionally complete. On the other hand, the dataset $((a,0), (b,0), (a,0), (a,0), (a,0), (a, 1))$ is complete but it is not functionally consistent.

In general, if $y_i \neq y_j$ for some $i$ and $j$ where $x_i = x_j$, then the dataset is not functionally consistent. In the preceding example, both $(a, 0)$ and $(a, 1)$ appear.

If we emphasize the “predictive” aspect of a functional inductor, we interpret the input as an object we “see before” the output. And so treat $y \in Y$ as an uncertain outcome which is the element associated to $x \in X$.

In this case, we may use the language of probability to discuss this uncertain outcome. If, for example, $Y$ is finite, we can associate a distribution with each input $x \in X$.


Let $(X, \mathcal{X} )$ and $(Y, \mathcal{Y} )$ be measurable spaces.

A probabilistic functional inductor (for a dataset of size $n$ in $X \times Y$) is a function mapping a dataset in $(X \times Y)^n$ to a family of measures on $(Y, \mathcal{Y} )$, indexed by $X$. We call a function from inputs to output measures a probabilistic predictor. We call the distribution a probabilistic prediction.


Let $\mathcal{M} (Y, \mathcal{Y} )$ be the set of measures on $Y$. Let $D$ be a dataset in $(X \times Y)^n$. Let $g: X \to \mathcal{M} (Y, \mathcal{Y} )$ a probabilistic predictor. Let $G_n (X \times Y)^n \to (X \to \mathcal{M} (Y, \mathcal{Y} ))$ be a predictive probabilistic inductor. Then $G_n(D)$ is a family of measures $\set{g_x: \mathcal{Y} \to [0, 1]}_{x \in X}$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view