\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Probability Measures ›
Real-Valued Random Variable Expectation ›
Needed by:
Sheet PDF ›
Graph PDF ›

Probabilistic Models


We have a space $X$ and a family of probability measures $\mathcal{P} $ on this space. Assume $x \in X$ drawn from a fixed, unknown measure $P \in \mathcal{P} $. Given $x$, how should we guess $P$?


A probabilistic model (or statistical model, parametric statistical model, statistical experiment) is a family of probability measures over the same measurable space $(X, \mathcal{F} )$. Call the index set the parameter set or set of parameters. The set $X$ is called the sample space. A statistic is any function on the sample space.


Let $(X, \mathcal{F} )$ denote a measurable space. We usually denote the parameter by $\Theta $, and denote the family

\[ \mathcal{P} = \Set{\mathbfsf{P} _\theta : \mathcal{F} \to [0,1]}{\mathbfsf{P} _\theta \text{ a measure}, \theta \in \Theta }. \]

Often $\Theta \subset \R ^d$.

Example: coin flips

The usual model for $n$ flips of a coin takes $X = \set{0,1}^n$, the set of binary $n$-tuples. For $\theta \in [0, 1]$, a distribution $p_\theta (x) = \theta ^t(1-\theta )^{n-t}$ where $t = t(x) = x_1 + \cdots + x_n$ is defined on $X$. A probability measure $\mathbfsf{P} _\theta $ is defined on $\powerset{X}$ in the the usual way. Thus, the probabilistic model is $\Set{\mathbfsf{P} _\theta }{\theta \in [0,1]}$. Given $x$, we are asked to guess $\theta $.


A decision procedure (estimator, statistical procedure) is a measurable function $A: \mathcal{X} \to \mathcal{A} $ where $\mathcal{A} $ is a a set, called the actions or decisions. Often $\mathcal{A} = \Theta $, in which case $A(x)$ givens an estimate of $\theta $, which we denote $\hat{\theta }(x)$.

Judging decisions

Given a loss function $L: \mathcal{A} \times \Theta \to \Rbar$, the risk of $A$ is

\[ R(A, \theta ) = \E L(A(x), \theta ). \]

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc — About — Show the old page view