\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Probabilistic Predictors
Probabilistic Dataset Models
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Probabilistic Learners

Why

In general, a dataset may be both incomplete and inconsistent.

Why

Let $(Z, \mathcal{Z} )$ be a measurable space. Let $\mathcal{M} (Z, \mathcal{Z} )$ be the set of measures over $(Z, \mathcal{Z} )$. A probabilistic inductor for a dataset in $Z^n$ is a function mapping $Z^n$ to $\mathcal{M} (Z, \mathcal{Z} )$.

Suppose $(Z, \mathcal{Z} ) = (X \times Y, \mathcal{X} \times \mathcal{Y} )$ for measurable spaces $(X, \mathcal{X} )$ and $(Y, \mathcal{Y} )$. Then a probabilistic inductor yields a probabilistic functional inductor. The conditional measure on $Y$ given an observation $x \in X$ is exactly a family of measures indexed by $X$.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view