\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Classifiers
Outcome Probabilities
List Classifiers
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Probabilistic Classifiers

Why

Since our predictions are often uncertain, we can use the language of probability distributions to characterize them.1

Definition

Denote the set of probability distributions on a set $X$ by $\Delta(X)$.

A probabilistic classifier $G: A \to \Delta(B)$ is a function from inputs $A$ to probability distributions over the classes $B$.

Given an input $a$, the prediction of $G$ on $a$ is a probability distribution $\hat{p}_a = G(a)$ on $B$.

Point classifier as probabilistic classifier

Given a point classifier $f: A \to B$, we can define a probabilistic classifier $G: A \to \Delta(B)$ corresponding to $f$ by

\[ \hat{p}_a(b) = \begin{cases} 1 & \text{ if } f(a) = b \\ 0 & \text{ otherwise.} \\ \end{cases} \]

where $\hat{p}_a = G(a).$

Probabilistic classifier from point classifier

On the other hand, given probabilistic classifier $G: A \to \Delta(B)$, we can define a point classifier $f: A \to B$ by

\[ f(a) = \underset{b \in B}{\text{argmax}} \; \hat{p}_a(v) \]

We call $f$ the maximum likelihood classifier corresponding to $G$. If there are ties, we can order the (finite) set $B$ arbitrarily, and break ties accordingly.

We can extend this idea, and define a list classifier by sorting the outputs by their probability, from largest to smallest.


  1. Future editions will improve this. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view