\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Prime Numbers
Number Factorizations
Needed by:
None.
Links:
Sheet PDF
Graph PDF
Wikipedia

Prime Number Factorizations

Result

Suppose $n \in \N $ and $n > 1$. Then there exists a factorization $(\pi _1, \dots , \pi _p)$ of $n$ where $\pi _i$ is prime for $i = 1, \dots , p$. In other words,

\[ n = \pi _1\pi _2\cdots\pi _p \]

This result is known as the fundamental theorem of arithmetic, or the prime factorization theorem. Future editions will include the proof.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view