Powers and Unions
Why
How does the power set relate to a union?
Notation preliminaries
Let $E$ denote a set.
Let $\mathcal{A} $ denote a set of subsets of
the set denoted by $E$.
We define $\bigcup_{A \in \mathcal{A} } A$ to
mean $\bigcup \mathcal{A} $.
Basic properties
Here are some basic interactions between the
powerset and unions.
$\powerset{E} \cup \powerset{F} \subset
\powerset{(E \cup F)}$
$\bigcup_{X \in \mathcal{C} } \powerset{X} \subset
\powerset{(\bigcup_{X \in \mathcal{C} } X)}$
$E = \bigcup \powerset{E}$
$\powerset{(\bigcup E)} \supset E$.
Typically $E \neq \powerset{(\bigcup E)}$, in
which case $E$ is a proper subset.