\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Set Powers
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Powers and Unions

Why

How does the power set relate to a union?

Notation preliminaries

Let $E$ denote a set. Let $\mathcal{A} $ denote a set of subsets of the set denoted by $E$. We define $\bigcup_{A \in \mathcal{A} } A$ to mean $\bigcup \mathcal{A} $.

Basic properties

Here are some basic interactions between the powerset and unions.1

$\powerset{E} \cup \powerset{F} \subset \powerset{(E \cup F)}$
$\bigcup_{X \in \mathcal{C} } \powerset{X} \subset \powerset{(\bigcup_{X \in \mathcal{C} } X)}$
$E = \bigcup \powerset{E}$
$\powerset{(\bigcup E)} \supset E$.
Typically $E \neq \powerset{(\bigcup E)}$, in which case $E$ is a proper subset.
  1. Future editions will expand on these propositions and provide accounts of them. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view