\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Set Powers
Set Intersections
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Powers and Intersections

Why

How does the power set relate to an intersection?

Notation preliminaries

First, if we have a set of sets—denote it $\mathcal{C} $—and all members are subsets of a fixed set—denote it $E$—then the set of sets is a subset of $\powerset{E}$. In this case, we can write

\[ \bigcap \Set{X \in \powerset{E}}{x \in \mathcal{C} } \]

Which is a sort of justification for the notation

\[ \bigcap_{X \in \mathcal{C} } X. \]

Basic properties

Here are some basic interactions between the powerset and intersections.1

$\powerset{A} \cap \powerset{F} = \powerset{(A \cap F)}$
$\bigcap_{X \in \mathcal{A} } \powerset{A} = \powerset{(\bigcap_{X \in \mathcal{A} } A)}$
$\bigcap_{X \in \powerset{E}} X = \emptyset$

  1. Future editions will expand on these propositions and provide accounts of them. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view