\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Inner Products
Real Polyhedra
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Polyhedra

Why

We generalize real polyhedra to aribtrary inner product spaces.

Definition

Suppose $X$ is a vector space with an inner product $\ip{\cdot ,\cdot }$ over $\R $. A set $P \subset X$ is a polyhedron (called a polyhedral set) if there exists $c_1, \dots , c_m \in X$ and $\alpha _1, \dots , \alpha _m \in \R $ so that

\[ P = \Set{x \in X}{\ip{x, c_i} \leq \alpha _i \text{ for } i = 1, \dots , m} \]

In other words, if the set can be described by finitely many inequalities.

As before, a polyhedron is a polytope if it is bounded.

Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view