How does convergence pointwise (or almost everywhere pointwise) relate to convergence in measure?
Let $(X, \mathcal{A} , \mu )$ be a measure space. Let $\seq{f}$ be a sequence of measurable functions on $X$ such that $\seqt{f} \goesto f$ almost everywhere. Let $\epsilon > 0$.
For each $x \in X$, if $\abs{f_n(x) - f(x)} > \epsilon $ for infinitely many $n$, then $f_n(x) \not\goesto f(x)$. Let $A$ be the set of such $x$ and let $B = \Set*{ x \in X }{ f_n(x) \not\goesto f(x) }$. $A$ is a subset of $B$. The measure of $B$ is zero since $f_n \goesto f$. Use the the monotonicity of measure to conclude. $\mu (A) \leq \mu (B) = 0$. Since $\mu (A) \geq 0$, $\mu (A) = 0$.
For natural $k$, let $E_k$ be the $\Set*{x
\in X} {\abs{f_k(x) - f(x)} > \epsilon }$.
Then $x \in A$ means that for every natural
$n$, there exists a $k \geq n$ such that $x
\in E_k$.
In particular, for every $n$, $x$ is in
$\cup_{k = n}^{\infty}E_k$;
denote this set by $B_n$.
If $x$ is in $B_n$ for every
$n$, then
$x \in \cap _{n = 1}^{\infty} B_n$.
So we can write
\[
A = \bigcap_{n = 1}^{\infty}
\bigcup_{k = n}^{\infty}
E_k
= \bigcap_{n = 1}^{\infty}
B_n
.
\] \[
\lim_{n \to \infty} \mu (B_n) = \mu (A) = 0.
\] \[
0
\leq \lim_{n \to \infty} \mu (E_n)
\leq \lim_{n \to \infty} \mu (B_n)
= 0,
\]
Let $(X, \mathcal{A} , \mu )$ be a measure space. Let $\seq{f}$ be a sequence of measurable functions on $X$ such that $\seqt{f} \goesto f$ in measure.
There exists $n_1$ so that
\[
\mu (\Set*{x \in X}{\abs{f_{n_1}(x) - f(x)} > 1}) <
\frac{1}{2}.
\] \[
\mu (\Set*{x \in X}{\abs{f_{n_2}(x) - f(x)} > \frac{1}{2}}) <
\frac{1}{4}.
\] \[
\mu (\Set*{
x \in x
}{
\abs{f_{n_k}(x) - f(x)} > \frac{1}{k}
}) \leq \frac{1}{2^k}.
\]