\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Plane Distance
Plane Vectors
Absolute Value
Needed by:
Plane Vector Angles
Space Norm
Links:
Sheet PDF
Graph PDF

Plane Norm

Why

We want to talk about the size of a displacement.1

Definition

The norm of a vector $x \in \R ^2$ is

\[ \sqrt{x_1^2 + x_2^2}. \]

Notation

We denote the norm of $x$ by $\norm{x}$. In other words, $\norm{\cdot}: \R ^2 \to \R $ is a function from vectors in $\R ^2$ to real numbers. The notation follows the notation of absolute value, the magnitude of a real number, and the double verticals remind us that $x$ is a vector. A warning: some authors write $\abs{x}$ for the norm of $x$ when it is understood that $x \in \R ^2$.

Visualization


  1. Future editions will complete. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view