\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Ordinary Row Reductions
Needed by:
Elimination Graphs
Links:
Sheet PDF
Graph PDF

Pivoted Row Reductions

Why

We want to modify ordinary row reduction to handle the case in which a pivot is zero by selecting another suitable pivot.

Example

Let $A \in \R ^{5 \times 5}$. If $A_{11} \neq 0$, we may subtract multiples of row $1$ from row $2, \dots , 5$ to eliminate variable $x_1$ from those equations. If $A$ reduces to $C \in \R ^{5 \times 5}$ and $C_{22} \neq 0$, then step 2 moves from

\[ {\tiny \barray{ \times & \cross & \cross & \cross & \cross \\ & C_{22} & \times & \times & \times \\ & \times & \times & \times & \times \\ & \times & \times & \times & \times \\ & \times & \times & \times & \times \\ } \text{ to } \barray{ \times & \cross & \cross & \cross & \cross \\ & C_{22} & \times & \times & \times \\ & {\bf 0} & \boldsymbol{\times} & \boldsymbol{\times} & \boldsymbol{\times} \\ & {\bf 0} & \boldsymbol{\times} & \boldsymbol{\times} & \boldsymbol{\times} \\ & {\bf 0} & \boldsymbol{\times} & \boldsymbol{\times} & \boldsymbol{\times} \\ }.} \]

What if $C_{22} = 0$? In this case suppose we pick a different row. For example, if $C_{42} \neq 0$ we can move from

\[ \tiny{ \barray{ \times & \cross & \cross & \cross & \cross \\ & \times & \times & \times & \times \\ & \times & \times & \times & \times \\ & C_{42} & \times & \times & \times \\ & \times & \times & \times & \times \\ } \text{ to } \barray{ \times & \cross & \cross & \cross & \cross \\ & {\bf 0} & \boldsymbol{\times} & \boldsymbol{\times} & \boldsymbol{\times} \\ & {\bf 0} & \boldsymbol{\times} & \boldsymbol{\times} & \boldsymbol{\times} \\ & C_{42} & \times & \times & \times \\ & {\bf 0} & \boldsymbol{\times} & \boldsymbol{\times} & \boldsymbol{\times} \\ }.} \]

Alternatively, we could introduce zeros in column 3 rather than column 2. For example, if we pick the pivot $C_{43}$ we move from

\[ \tiny{ \barray{ \times & \cross & \cross & \cross & \cross \\ & \times & \times & \times & \times \\ & \times & \times & \times & \times \\ & \times & C_{43} & \times & \times \\ & \times & \times & \times & \times \\ } \text{ to } \barray{ \times & \cross & \cross & \cross & \cross \\ & \boldsymbol{\times} & {\bf 0} & \boldsymbol{\times} & \boldsymbol{\times} \\ & \boldsymbol{\times} & {\bf 0} & \boldsymbol{\times} & \boldsymbol{\times} \\ & \times & C_{43} & \times & \times \\ & \boldsymbol{\times} & {\bf 0} & \boldsymbol{\times} & \boldsymbol{\times} \\ }.} \]

We can choose any nonzero entry in $C_{k:m,k:m}$ as the pivot.

Suppose we pick pivot $C_{st} \neq 0$ for $k \leq s, t \leq m$. Define $\tilde{C}$ by swapping row $s$ of $C$ with row $k$ of $C$ and column $t$ of $C$ with column $k$ of $C$. Then $\tilde{C}_{kk} = C_{st} \neq 0$ and there exists an ordinary row reduction for $\tilde{C}$. We call this reduction of $(\tilde{C}, \tilde{d})$ a pivoted row reduction of $C$ or the $st$-reduction of C.

If all remaining pivots are zero, then there is no viable pivot. In this case, at least one variable is free and we do not have a unique solution. For convenience, in this case, we still call the system an $st$-reduction of itself.

Definition

At step $k$ of ordinary elimination, multiples of row $k$ are subtracted from rows $k+1, \dots , m$ to introduce zeros in entry $k$ of the rows. If we denote the matrix at the beginning of that step by $X$, then row $k$ of $X$, column $k$ of $X$ and especially the pivot $X_{kk}$ play a role. Ordinarily, we subtract from every entry in the submatrix $X_{k+1:m,k:m}$ the product of a number in row $k$ and a number in column $k$, divided by the pivot $X_{kk}$. Generally, however, we can choose as pivot any nonzero entry of $X_{k:m,k:m}$.

An $m$-variable system $(A, b)$ is pivot reducible (or reducible) if there exists a sequence of systems $S_1, \dots , S_{m-1}$ so that $S_1$ is a reduction of $(A, b)$ and $S_{i}$ is a reduction of $S_{i-1}$ for $i = 1, \dots , m-1$. We call $S_{m-1}$ the final reduction (or reduction) of $(A, b)$. An immediate consequence of our definition is

All systems are reducible.
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view