\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Set Unions
Needed by:
Intersection of Empty Set
Set Dualities
Set Unions and Intersections
Successor Sets
Uncertain Outcomes
Unordered Triples
Venn Diagrams
Links:
Sheet PDF
Graph PDF

Pair Unions

Why

We often unite the elements of one set with another.

Discussion

Let $A$ and $B$ denote sets. We call $\cup \set{A, B}$ the pair union of $A$ and $B$. We denote the union of the pair $\set{A, B}$ by $A \cup B$. Clearly the pair union does not depend on the order of $A$ and $B$. In other words, $A \cup B = B \cup A$.

Facts

Here are some basic facts about unions of a pair of sets.1 Let $A$ and $B$ denote sets.

$A \cup \varnothing = A$
$A \cup B = B \cup A$
$(A \cup B) \cup C = A \cup (B \cup C)$
$A \cup A = A$.
$A \subset B \iff A \cup B = B$

  1. Proofs will appear in the next edition. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view