\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Outcome Variable Covariance
Needed by:
None.
Links:
Sheet PDF
Graph PDF

Outcome Variable Moments

Definition

Let $x: \Omega \to \R $ a random variable and $p: \Omega \to \R $ a distribution. The mean square of $x$ is $\E (x^2)$. Define $\mu = \E (x)$. We can express $\E (x^2) = \E (x)^2 + \cov(x)$ since

\[ \begin{aligned} \cov(x) = \E ((x -\mu )^2) &= \E (x^2 - 2\mu x + \mu ^2) \\ &= \E (x^2) -2\mu \E (x) + \mu ^2 \\ &= \E (x^2) - \mu ^2. \end{aligned} \]

We refer to this relation as the mean-variance decomposition of $x$.1

The n’th moment of $x$ is $\E (x^n)$. The mean is the first moment. The covariance is the second moment minus the square of the first moment.


  1. Future editions will modify this sheet, and likely motivate this decomposition in terms of minimum square error estimation. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view