\(\DeclarePairedDelimiterX{\Set}[2]{\{}{\}}{#1 \nonscript\;\delimsize\vert\nonscript\; #2}\) \( \DeclarePairedDelimiter{\set}{\{}{\}}\) \( \DeclarePairedDelimiter{\parens}{\left(}{\right)}\) \(\DeclarePairedDelimiterX{\innerproduct}[1]{\langle}{\rangle}{#1}\) \(\newcommand{\ip}[1]{\innerproduct{#1}}\) \(\newcommand{\bmat}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\barray}[1]{\left[\hspace{2.0pt}\begin{matrix}#1\end{matrix}\hspace{2.0pt}\right]}\) \(\newcommand{\mat}[1]{\begin{matrix}#1\end{matrix}}\) \(\newcommand{\pmat}[1]{\begin{pmatrix}#1\end{pmatrix}}\) \(\newcommand{\mathword}[1]{\mathop{\textup{#1}}}\)
Needs:
Outcome Variable Probabilities
Needed by:
Outcome Variable Covariance
Probability Vectors
Real-Valued Random Variable Expectation
Links:
Sheet PDF
Graph PDF

Outcome Variable Expectation

Why

If we model some measured value as a random variable with induced distribution $p: V \to \R $, then one interpretation of $p(v)$ for $v \in V$ is the proportion of times in a large number of trials that we expect to measure the value $v$.1

Definition

Given a distribution $p: \Omega \to \R $ and a real-valued outcome variable $x: \Omega \to \R $, the expectation (or mean) of $x$ under $p$ is $\sum_{\omega \in \Omega } p(\omega )x(\omega )$.

Notation

We denote the expectation of $x$ under $p$ by $\E _p(x)$. When there is no chance of ambiguity, we write $\E (x)$.

Properties

Let $x, y : \Omega \to \R $ be two outcome variables and $p: \Omega \to \R $ a distribution. Let $\alpha , \beta \in \R $. Define $z = \alpha x + \beta y$ by $z(\omega ) = \alpha x(\omega ) + \beta y(\omega )$. Then $\E (z) = \alpha \E (x) + \beta \E (z)$. Many authors refer to this property as the linearity of expecation.

Example: expectation

Suppose $\Omega = \set{1, 2, 3, 4, 5}$ with $p(1) = 0.1$, $p(2) = 0.15$, $p(3) = 0.1$, $p(5) = 0.25$ and $p(5) = 0.4$. Define $x: \Omega \to \R $ by

\[ x(a) = \begin{cases} -1 & \text{ if } a = 1 \text{ or } a = 2, \\ 1 & \text{ if } a = 3 \text{ or } a = 4, \\ 2 & \text{ if } a = 5. \\ \end{cases} \]

The expectation of $x$ under $p$ is

\[ \E x = -1 -0.15 + 0.1 + 0.25 + 2(0.4) = 0.9. \]

Two routes for computation

Denote by $p_x: V \to \R $ the induced distribution of $x: \Omega \to V$ (where $V \subset \R $). Then $\E (x) = \sum_{v \in V} p_x(v)v$ since

\[ \begin{aligned} \textstyle \sum_{\omega \in \Omega } p(\omega )x(\omega ) &= \sum_{v \in V} \sum_{\omega \in x^{-1}(v)} x(\omega )p(\omega ) \\ \textstyle &= \sum_{v \in V} v \sum_{\omega \in x^{-1}(v)} p(\omega ) \\ \textstyle & = \sum_{v \in V} x(v) p_x(v). \end{aligned} \]

Interpretations

We interpret the mean as the center of mass of the induced distribution.


  1. Future editions may modify this explanation, and take a genetic approach via summary statistics. ↩︎
Copyright © 2023 The Bourbaki Authors — All rights reserved — Version 13a6779cc About Show the old page view